VIRTUAL COACHING CLASSES ORGANISED BY BOS (ACADEMIC), ICAI

FOUNDATION LEVEL
 PAPER 3: BUSINESS MATHEMATICS, LOGICAL REASONING \& STATISTICS (REVISION SESSION - 2)

Faculty: CA Arijit Chakraborty

Discussion flow :

■ Review session - 2
■ Integral calculus

Integration

Integration is the reverse process of differentiation.
Anti-derivative
Integration is the inverse operation of differentiation and denoted by the symbol: S :
The symbol is a stylized S to indicate summation
Integral calculus was primarily invented to determine the area bounded by the curves dividing the entire area into infinite number of infinitesimal small areas and taking the sum of all these small areas.

Definition of anti-derivative

- Formally, we define the anti-derivativeas: If $f(x)$ is a continuous function and $\boldsymbol{F}(\boldsymbol{x})$ is the function whose derivative is $\boldsymbol{f}(\boldsymbol{x})$, i.e.: $\boldsymbol{F}^{\prime}(\boldsymbol{x})=\boldsymbol{f}(\boldsymbol{x})$, then:

$$
\begin{gathered}
\int \boldsymbol{f}(\boldsymbol{x}) \boldsymbol{d x}=\boldsymbol{F}(\boldsymbol{x})+\mathrm{c} ; \text { where } \mathrm{c} \text { is any } \\
\text { arbitrary constant. }
\end{gathered}
$$

8.B.4 :INTEGRATION BY PARTS

Integration by Parts

$$
\int u d v=u v-\int v d u
$$

Choose u in this order: LIATE
Logs
Inverse
Algebraic
Trig
Exponential

$$
\begin{aligned}
& \int f^{\prime}(x) f(x) d x=\frac{1}{2}(f(x))^{2}+C \\
& \int(4 x+5)\left(2 x^{2}+5 x\right) d x=\frac{1}{2}\left(2 x^{2}+5 x\right)^{2}+C
\end{aligned}
$$

Example

Find $\int x \ln |x| \mathrm{d} x$.

Then, applying the formula

$$
\begin{aligned}
\int x \ln |x| \mathrm{d} x & =\frac{x^{2}}{2} \ln |x|-\int \frac{x^{2}}{2} \cdot \frac{1}{x} \mathrm{~d} x \\
& =\frac{x^{2}}{2} \ln |x|-\int \frac{x}{2} \mathrm{~d} x \\
& =\frac{x^{2}}{2} \ln |x|-\frac{x^{2}}{4}+c
\end{aligned}
$$

where c is the constant of integration.

MTP : Integration by parts - ILATE

■. Int $x^{3} \log x d x$,

- let $u=x 3, v=\log x$
- $\mathrm{X}^{4} / 16(4 \log \mathrm{x}-1)+\mathrm{k}$

Example: MTP

■ Find the equation of the curve where slope at (x, y) is $9 x$ and which passes through the origin.

■ Solution:
■ Dy/ $\mathrm{dx}=9 \mathrm{x}$
■ \òdy $=$ or $y=9 x^{2} / 2+c$
■ Since it passes through the origin, $c=0$; thus required eqn. is $9 x^{2}=2 y$.

MTP question

■ . If $f^{\prime}(x)=x-1$, the equation of a curve $y=f(x)$ passing through the point $(1,0)$ is given by
■ $=x 2 / 2-x+k$, at $1,0 \ldots . \mathrm{K}=1 / 2$

- So eqn : $y=x^{2} / 2-x+1 / 2$

MTP Oct 2020

-40. If $f^{\prime}(x)=3 \times 2+2$ and $f(0)=0$, find $f(2)$
(8) 5
(4) 8
(9) 10
(9) 12

MTP 2021

■ 39. Evaluate : Int $2 x+1 d x / x(x+1)$

- Let $\mathrm{x} 2+\mathrm{x}=\mathrm{p}$
- Etc

MTP 2021

■ 40. Evaluate Int $x^{5} \mathrm{dx}$ between 0 to 2

THANK YOU

