VIRTUAL COACHING CLASSES ORGANISED BY BOS (ACADEMIC), ICAI

FOUNDATION LEVEL PAPER 3: BUSINESS MATHEMATICS, LOGICAL REASONING \& STATISTICS

Faculty: CA Arijit Chakraborty

Calculus

Overview : 8.A. 1

■ Differentiation is one of the most important fundamental operations in calculus. Its theory primarily depends on the idea of limit and continuity of function.

- To express the rate of change in any function we introduce concept of derivative which involves a very small change in the dependent variable with reference to a very small change in independent s.
- Thus differentiation is the process of finding the derivative of a continuous function. It is defined as the limiting value of the ratio of the change (increment) in the function corresponding to a small change (increment) in the independent variable (argument) as the later tends to zero.

8.A. 2

- Let $y=f(x)$ be a function.
- If h (or Dx) be the small increment in x and the corresponding increment in y or $f(x)$ be $D y=f(x+h)-f(x)$ then the derivative of $f(x)$ is defined:
- Lim h --- 0
- $F(x+h)-f(x) / h$

■ $=d y / d x$

Limit

The limit is the value that y approaches as x approaches a given value Differentiation is the process of computing the derivative of a function.

Let $f(x)=x 2$ for $x=3$

$$
\begin{aligned}
f^{\prime}(3) & =\lim _{h \rightarrow 0} \frac{(3+h)^{2}-3^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-9}{h} \\
& =\lim _{h \rightarrow 0} \frac{6 h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(6+h) \\
& =6
\end{aligned}
$$

Pg 8.6

- Example: Differentiate each of the following functions with respect to x :
- A) $3 \times 2+5 x-2$
- (a) Let $y=f(x)=3 x 2+5 x-2$
- $=3 \times 2 x+5.1-0=6 x+5$
- B) Let $h(x)=a^{x}+x^{a}+a$ power a
- $=a^{x} \log a+a x^{a-1}+0$
- C) Let $f(x)=1 / 3 x 3-5 x 2+6 x-2 \log x+3$.
- = $x 2-10 x+6-2 / x$

Product rule

Product Rule

If $f(x)$ and $g(x)$ are both differentiable, then

$$
\begin{aligned}
\frac{d}{d x}[f(x) g(x)] & =f(x) \frac{d}{d x}[g(\mathrm{x})]+g(x) \frac{d}{d x}[f(x)] \\
& =f(x) g^{\prime}(x)+g(x) f^{\prime}(x)
\end{aligned}
$$

or
Let $u=f(x)$ and $v=g(x)$ then

$$
\frac{d}{d x} u v=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

$F(x)=\left(3 x^{2}-1\right)(x 2+5 x+2)$

$$
\begin{aligned}
f^{\prime}(x) & =\left(3 x^{2}-1\right) \frac{d}{d x}\left(x^{2}+5 x+2\right)+\left(x^{2}+5 x+2\right) \frac{d}{d x}\left(3 x^{2}-1\right) \\
& =\left(3 x^{2}-1\right)(2 x+5)+\left(x^{2}+5 x+2\right)(6 x) \\
& =6 x^{3}+15 x^{2}-2 x-5+6 x^{3}+30 x^{2}+12 x \\
& =12 x^{3}+45 x^{2}+10 x-5
\end{aligned}
$$

- D) Let $y=e^{x} \log x$
- $\operatorname{Dy} / \mathrm{dx}=$ product rule $=\mathrm{e}^{\mathrm{x}} / \mathrm{x}+\mathrm{e}^{\mathrm{x}} \log \mathrm{x}$
- E) $y=2^{x} x^{5}$
- $d y / d x=x^{5} 2^{x} \log _{e} 2+5.2^{x} x^{4}$

■ ${ }^{\text {F) }}$ Let $y=e^{x} / \log x \quad$ (Division / quotient rule)

- = $(\log x) \underline{d}\left(e^{x}\right)-e^{x} \underline{d}(\log x)$
- $=\mathrm{dx} \mathrm{dx}$
- $\quad(\log x) 2$

Quotient rule

$$
\begin{aligned}
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right] & =\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{(g(x))^{2}} \\
\frac{d}{d x}\left[\frac{H i}{H o}\right] & =\frac{H o \cdot d H i-H i \cdot d H o}{H o H o}
\end{aligned}
$$

Calcworkshop.com

quotient of two functions

- Let $h(x)=2 x / 3 x^{3}+7$
- Quotient rule
- $=\left(3 x^{3}+7\right) 2--2 x\left(9 x^{2}\right) /\left(3 x^{3}+7\right)^{2}$

Examples of differentiations from the 1st principle

- d (c) $/ \mathrm{dx}=0$ where $\mathrm{c}=\mathrm{constant}$
- Let $f(x)=x^{n}$, the $d y / d x=n x^{n-1}$
- $f(x)=e^{x}, d y / d x=e^{x}$ Exponential Function
- The exponential constant is an important mathematical constant and is given the symbol \mathbf{e}. Its value is approximately 2.718 . It has been found that this value occurs so frequently when mathematics is used to model physical and economic phenomena that it is convenient to write simply e.
- Let $f(x)=a^{x} d y / d x=a^{x}$ logea

■ Let $f(x)=$ sq root x, then $d y / d x=1 / 2 x^{1 / 2}$

- $f(x)=\log x, d y / d x=1 / x$

8.A. 3 SOME STANDARD RESULTS(FORMULAS)- Table: Few functions and their derivatives

$\mathrm{e}=$ The number e is a mathematical constant approximately equal to 2.71828 and is the base of the natural logarithm,

Function	derivative of the function
$f(\mathrm{x})$	$f^{\prime}(\mathrm{x})$
x n	$\mathrm{n} \times \mathrm{n}-1$
e^{ax}	$\mathrm{ae}^{\mathrm{ax}}$
$\log \mathrm{x}$	$1 / \mathrm{x}$
a^{x}	$\mathrm{a}^{\times} \log$ ea
$\mathrm{c}(\mathrm{a}$ constant $)$	0

Table: Basic Laws for differentiation

Function

(i) $h(x)=c . f(x)$ where c isany real constant (Scalar multiple of a function)
(i) $h(x)=f(x) \pm g(x)$
(Sum/Difference offunction)
(ii) $\mathrm{h}(\mathrm{x})=\mathrm{f}(\mathrm{x}) . \mathrm{g}(\mathrm{x})$ (Product of functions)
(i) $\mathrm{h}(\mathrm{x}) \stackrel{\mathrm{f(x)}}{=\mathrm{g}}(\mathrm{x})$
(Quotient of function)
(i) $h(x)=f\{g(x)\}$

Derivative of the function

$$
\underline{d}\{h(x)\}=\underset{d x}{c} \cdot \underline{d}\{f(x)\} d x
$$

$$
\underline{\mathrm{d}}\{\mathrm{~h}(\mathrm{x})\} \underset{\mathrm{dx}}{\mathrm{~d}} \square \mathrm{f}(\mathrm{x})_{\mathrm{dx}} \pm \underline{\mathrm{d}}\{\mathrm{~g}(\mathrm{x})\} \mathrm{dx}
$$

$$
\frac{d}{d x}\{\mathrm{~h}(\mathrm{x})\}=\mathrm{f}(\mathrm{x}) \frac{\mathrm{d}}{\mathrm{dx}}\{\mathrm{~g}(\mathrm{x})\}+\mathrm{g}(\mathrm{x}) \frac{\mathrm{d}}{\mathrm{dx}}\{\mathrm{f}(\mathrm{x})\}
$$

$$
\frac{\mathrm{d}}{\mathrm{dx}}\{\mathrm{~h}(\mathrm{x})\} \underset{\mathrm{dz}}{\mathrm{dz}} \mathrm{df}(\mathrm{z}) \cdot \frac{\mathrm{dz}}{\mathrm{dx}}, \text { where } \mathrm{z}=\mathrm{g}(\mathrm{x})
$$

Derivatives

■ Derivatives measure the pitch of the line that represents a function on a graph, at one particular point on that line. That means derivatives are the slope.

■ If the independent variable (the "input" variable in a function) is "time," then the derivative is the rate of change, as the velocity.

- If we look at a short section of the line of the function so that the line is nearly straight, the derivative of that section is the slope of the line.
- The slope of a line connecting two points on a function graph approaches the derivative when the interval between the points is zero.

8.A. 4 DERIVATIVE OF A FUNCTION OF FUNCTION

- If $y=f[h(x)]$ then $\underline{d y}=\underline{d y} \times \underline{d u}=f^{\prime}(u) \times h^{\prime}(x)$

■ $d x$ du dx

- where $\mathrm{u}=\mathrm{h}(\mathrm{x})$

Pg 8.8

■ Example: Differentiate log (1 + x2) wrt. x
■ Solution: Let $y=\log (1+x 2)=$ logt when $t=1+x 2$

- $2 x /\left(1+x^{2}\right)$

8.A. 5 IMPLICIT FUNCTIONS

- A function in the form $f(x, y)=0$. For example $x 2 y 2+3 x y+y=0$ where y cannot be directly defined as a function of x is called an implicit function of x.
- In case of implicit functions if y be a differentiable function of x, no attempt is required to express y as an explicit function of x for finding out dy/dx
■ In such case differentiation of both sides with respect of x and substitution of $d y / d x=y 1$ gives the result. Thereafter $y 1$ may be obtained by solving the resulting equation.

Pg 8.9

■ Example: Find dy/dx for $x 2 y 2+3 x y+y=0$
■ Differentiating with respect to x we see
■ X2 d/dx y2 + y2. $2 \mathrm{x}+3(\mathrm{x} . \mathrm{dy} / \mathrm{dx}+\mathrm{y})+\mathrm{dy} / \mathrm{dx}=0$
■ $2 y x 2 d y / d x+2 x y 2+3 x d y / d x+3 y+d y / d x=0$
■ Dy/dx($2 y x 2+3 x+1)=--(2 x y 2+3 Y)$

8.A. 6 PARAMETRIC EQUATION

■ When both the variables x and y are expressed in terms of a parameter (a third variable), the involved equations are called parametric equations.

■ Dy/dx = dy/dt. Dt/dx

- Example : If $x=a t^{3}$, $y=a / t 3$, find $d y / d x$
- $d y=d y^{\prime} \quad \underline{d t}=-3 a^{-} \underline{1}=-1$

■ dx dt $d x \quad t^{4} \quad t^{6}$

DERIVATIVE OF A FUNCTION OF FUNCTION

■ Example: Differentiate log $(1+x 2)$ wrt. x
■ Solution: Let $y=\log (1+x 2)=$ logt
■ when t $=1+x 2$
■ Dy/dt = 1/t * dt/dx= 1/(1+x2) * $2 x$

8.A. 7 LOGARITHMICDIFFERENTIATION

- The procedure is convenient to adopt when the function to be differentiated involves a function in its power or when the function is the product of number of functions
■ Example: Differentiate x^{x} w.r.t. x
$■$ Solution: let $y=x^{x}$ Taking logarithm, $\log y=x \log x$
■ $=x^{x}(1+\log x)$
■ This procedure is called logarithmic differentiation.
- If $x^{m} y^{n}=(x+y)$ power $m+n$ prove that $d y / d x=y / x$
- Taking log on both sides
-

$\log x m y n=(m+n) \log (x+y)$

- or $m \log x+n \log y=(m+n) \log (x+y)$
- $m / x+x / y d y / d x=(m+n / x+y)(1+d y / d x)$
- Transposing m / x to RHS and ($m+n / x+y$) to LHS
- Dy/dx = y/x

8.A. 9 BASIC IDEA ABOUT HIGHER ORDER DIFFERENTIATION

■ Let $y=f(x)=x 4+5 x 3+2 x 2+9$
$d y / d x=4 x 3+15 x 2+4 x$

- d2y
- Dx2 = $12 \times 2+30 x$

■ D3y/dx3 = $24 x+30$

8.A. 10 GEOMETRIC INTERPRETATION OF THE DERIVATIVE

The slope of a curve is equal to the slope of the line (or tangent) that touches the curve at that point

Total Cost Curve

which is different for different values of x

■ Let $f(x)$ represent the curve in the fig. We take two adjacent pairs P and Q on the curve Let $f(x)$ represent the curve in the fig. We take two adjacent points P and Q on the curve whose coordinates are (x, y) and (x $+D x, y+D y)$ respectively. The slope of the chord TPQ is given by $d y / d x$
■ The derivative of $f(x)$ at a point x represents the slope (or sometime called the gradient of the curve) of the tangent to the curve $y=f(x)$ at the point x

■ Example: Find the gradient of the curve $y=3 x 2-5 x+4$ at the point (1, 2).

- $D y / d x==6 x-5$
- At 1,2 ----- 6.1-5= gradient is 1

Applications of Differential Calculus:

■ Differentiation helps us to find out the average rate of change in the dependent variable with respect to change in the independent variable.
■ It makes differentiation to have applications.
■ Various scientific formulae and results involves:

- rate of change in price,

■ change in demand with respect change in output,
■ change in revenue obtained with respect change in price,

- change in demand with respect change in income, etc.

Pg 8.15

■ Cost Function: Total cost consists of two parts (i) Variable Cost (ii) Fixed Cost

- If $C(X)$ denotes the cost producing x units of a product then $C(x)=V(x)+F(x)$, where $V(x)$ denotes the variable cost and $F(x)$ is the fixed cost. Variable cost depends upon the number of units produced (i.e value of x) whereas fixed cost is independent of the level of output x. For example.
- Average cost (AC or C) = Total cost / output
- Average variable cost (AVC)= V.C/ Output
- Average Fixed Cost (AFC) = FC/ output
- Marginal Cost: If $C(x)$ the total cost producing x units then the increase in cost in producing one more unit is called marginal cost at an output level of x units and is given as dy/dx
- Marginal Cost (MC) = Rate of change in cost C per unit change in Output at an output level of x units $=D C / d x$
- To increase profits of a company may decide to increase its production. The question

Differentiation in Economics

Application I

- Total Costs $=$ TC = FC + VC
- Total Revenue $=$ TR $=P$ * Q
- $\pi=$ Profit = TR - TC
- Break even: $\pi=0$, or TR = TC
- Profit Maximisation: MR = MC

Example 2: pg 8.16= maxima \& minima

■ The cost function of a company is given by:

- $C(x)=100 x-8 x 2+x 3 / 3$

■ where x denotes the output. Find the level of output at which:
■ marginal cost is minimum
■ average cost is minimum

- $M(x)=$ Marginal Cost $=C(x)=d / d x(=100 x-8 x 2+x 3 / 3)=100-16 x+x 2$
- $M(x)$ is maximum or minimum when $M \phi(x)=-16+2 x=0$ or, $x=8$.
- $\mathrm{D} 2 \mathrm{x} / \mathrm{dx} 2=2>0$, so minima at $\mathrm{x}=8$
- Avg Cost $=C x / x=100-8 x+x 2 / 3$

■ $A(x)$ is maximum or minimum when $A \phi(x=--8+2 x / 3=$ 0

- $\mathrm{X}=12$
- D2x/ dx2 = $2 / 3>0$
- So AC is minimum at $x=12$
- So $A C=$ putting $x=12$ in eqn $=52$

Revenue Function - pg 8.16

- : Revenue, $R(x)$, gives the total money obtained (Total turnover) by selling x units of a product. If x units are sold at ' P per unit, then $R(x)=P . X$
■ Marginal Revenue: It is the rate of change I revenue per unit change in output. If R is the revenue and x is the output, then $M R=D R / D X$
■ Profit function: Profit $P(x)$, the difference of between total revenue $R(x)$ and total Cost $C(x)$.
- $P(X)=R(x)-C(x)$

■ Marginal Profit: It is rate of change in profit per unit change in output

- dP/ dx

Example 3 - pg 8.17

■ Example 3: A computer software company wishes to start the production of floppy disks. It was observed that the company had to spend ` 2 lakhs for the technical informations. The cost of setting up the machine is 88,000 and the cost of producing each unit is` 30 , while each floppy could be sold at ` 45.Find:

- the total cost function for producing x floppies;and
- the break-even point.

Solution

■ Given, fixed cost $=` 2,00,000+` 88,000=` 2,88,000$.

- If $C(x)$ be the total cost function for producing floppies, then $C(x)=30 x+2,88,000$
- The Revenue function $R(x)$, for sales of x floppies is given by $R(x)$ $=45 x$. For break-even point, $R(x)=C(x)$
■ i.e., $45 x=30 x+2,88,000$
■ i.e., $15 x=2,88,0000 \square x=19,200$, the break-even point

Example 4

- Example 4: A company decided to set up a small production plant for manufacturing electronic clocks. The total cost for initial set up (fixed cost) is ` 9 lakhs. The additional cost for producing each clock is 300. Each clock is sold at` 750 . During the first month, 1,500 clocks are produced and sold.
■ What profit or loss the company incurs during the first month, when all the 1,500 clocks are sold?
- Determine the break-even point.
- (b) Total cost of producing 20 items of a commodity is `205 , while total cost of producing 10 items is` 135 . Assuming that the cost function is a linear function, find the cost function and marginal cost function.

Solution:

- The total cost function for manufacturing x Clocks is given by $\mathrm{C}(\mathrm{x})=$ Fixed cost + Variable cost to produce x Clocks = 9,00,000 +300x.
- The revenue function from the sale of x clocks in given by $R(x)=750$ $x x=750 x$.
- Profit function, $P(x)=R(x)-C(x)$

■ = 750x - $(9,00,000+300 x)=450 x-9,00,000$
■ \square Profit, when all 1500 clocks are sold $=P(1500)=450 \times 1500-$ $9,00,000=-` 2,25,000$ Thus, there is a loss of ‘ $2,25,000$ when only 1500 clocks are sold.

- At the break-even point, $R(x)=C(x)$ or, 9,00,000 + 300x $=750 x$

■ or, 450x=9,00,000 $\square \quad x=2,000$
■ Hence, 2000 clocks have to be sold to achieve the break-even point.

- Let cost function be
- $\mathrm{C}(\mathrm{x})=\mathrm{ax}+\mathrm{b}$,
- x being number of items and a, b being constants.
- Given, $C(x)=205$ for $x=20$ and $C(x)=135$ for $x=10$. Putting these values in (i),
- 205=20a+b
- 135=10a+b

■ (ii) - (iii) gives,

- 70=10a or, $a=7$

■ From(iii), $b=135-10 a=135-70=65$

- Required cost function is given by $C(x)=7 x+65$
- Marginal cost function, $\mathrm{C} \Phi(\mathrm{x})=7$
- Marginal Propensity to Consume (MPC): The consumption function C $=F(Y)$ expresses the relationship between the total consumption and total Income (Y),
- then the marginal propensity to consume is defined as the rate of Change consumption per unit change in Income
■ i.e. $d C / d Y$. , By consumption we mean expenditure incurred in on Consumption.

■ Marginal Propensity to save (MPS): Saving,
■ S is the difference between income, I and consumption,
■ c, i.e ., dS / dY.

Recap

■ Limit - concept
■ Derivative -concept

- Derivative - addition \& subtraction
- Product rule
- Quotient rule
- Implicit functions

■ Logarithmic differentiation

- Parametric functions

■ Slope -tangent
■ Higher order derivatives

- Maxima \& minima

Extra content: Minimum and Maximum

■ Let's imagine you own a company, and your company's profit can be modeled by the function $P(x)=-10 x^{2}+1760 x-50000$, where $P(x)$ is your company's profit, and x is the number of products sold. To find that maximum profit and solve problems similar to this one, we need to be familiar with maximum and minimum points of a function.

- A maximum point of a function is the highest point on the graph of a function, or the point that takes on the largest y-value. The minimum point of a function is the lowest point on the graph of a function, or the point that takes on the smallest y-value. Now take a look at the graph below.

THANK YOU

