VIRTUAL COACHING CLASSES ORGANISED BY BOS (ACADEMIC), ICAI

FOUNDATION LEVEL
 PAPER 3: BUSINESS MATHEMATICS, LOGICAL REASONING \& STATISTICS (REVISION SESSION - 1)

Faculty: CA Arijit Chakraborty

Rate of Change

$$
\begin{aligned}
& f^{\prime}(x) \approx \frac{f(b)-f(a)}{b-a} \\
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\end{aligned}
$$

$$
\frac{d f}{d t}=\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h}
$$

$$
\begin{aligned}
& \frac{d}{d x}\left(3 x^{2}-2 x+1\right) \\
= & 3 \frac{d}{d x}\left(x^{2}\right)-2 \frac{d}{d x}(x)+\frac{d}{d x}(1) \\
= & 3(2 x)-2(1)+(0) \\
= & 6 x-2
\end{aligned}
$$

Product rule

Product Rule

If $f(x)$ and $g(x)$ are both differentiable, then

$$
\begin{aligned}
\frac{d}{d x}[f(x) g(x)] & =f(x) \frac{d}{d x}[g(\mathrm{x})]+g(x) \frac{d}{d x}[f(x)] \\
& =f(x) g^{\prime}(x)+g(x) f^{\prime}(x)
\end{aligned}
$$

or
Let $u=f(x)$ and $v=g(x)$ then

$$
\frac{d}{d x} u v=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

Pg 8.8

■ Example: Differentiate log (1 + x2) wrt. x
■ Solution: Let $y=\log (1+x 2)=$ logt when $t=1+x 2$

- $2 x /\left(1+x^{2}\right)$

8.A. 5 IMPLICIT FUNCTIONS

- A function in the form $f(x, y)=0$. For example $x 2 y 2+3 x y+y=0$ where y cannot be directly defined as a function of x is called an implicit function of x.
- In such case differentiation of both sides with respect of x and substitution of $\mathrm{dy} / \mathrm{dx}=\mathrm{y} 1$ gives the result.
- Thereafter y1 may be obtained by solving the resulting equation.

8.A. 6 PARAMETRIC EQUATION

■ When both the variables x and y are expressed in terms of a parameter (a third variable), the involved equations are called parametric equations.

■ Dy/dx = dy/dt. Dt/dx

- Example : If $x=a t^{3}$, $y=a / t 3$, find $d y / d x$
- $d y=d y^{\prime} \quad \underline{d t}=-3 a^{-} \underline{1}=-1$

■ dx dt $d x \quad t^{4} \quad t^{6}$

DERIVATIVE OF A FUNCTION OF FUNCTION

■ Example: Differentiate log $(1+x 2)$ wrt. x
■ Solution: Let $y=\log (1+x 2)=$ logt
■ when t $=1+x 2$
■ Dy/dt = 1/t * dt/dx= 1/(1+x2) * $2 x$

8.A. 7 LOGARITHMIC DIFFERENTIATION

- The procedure is convenient to adopt when the function to be differentiated involves a function in its power or when the function is the product of number of functions
■ Example: Differentiate x^{x} w.r.t. x
■ Solution: let $y=x^{x}$ Taking logarithm, $\log y=x \log x$
■ $=x^{x}(1+\log x)$
■ This procedure is called logarithmic differentiation.

■ If $x^{m} y^{n}=(x+y)$ power $m+n$
■ prove that $d y / d x=y / x$
■ Taking log on both sides
■ $\log x m y n=(m+n) \log (x+y)$
■ or $m \log x+n \log y=(m+n) \log (x+y)$
■ $m / x+n / y d y / d x=(m+n / x+y)(1+d y / d x)$
■ Transposing m / x to RHS and ($m+n / x+y$) to LHS
■ Dy/dx $=y / x$

8.A. 9 BASIC IDEA ABOUT HIGHER ORDER DIFFERENTIATION

■ Let $y=f(x)=x 4+5 x 3+2 x 2+9$

- $\mathrm{dy} / \mathrm{dx}=4 \mathrm{x} 3+15 \mathrm{x} 2+4 \mathrm{x}$
- d2y
- Dx2 = $12 \times 2+30 \mathrm{x}$

■ D3y/dx3 = $24 x+30$

The slope of a curve is equal to the slope of the line (or tangent) that touches the curve at that point

Total Cost Curve

which is different for different values of x

- Example: Find the gradient of the curve $y=3 \times 2$ $5 x+4$ at the point $(1,2)$.
■ Dy/dx = = 6x-5
- At 1,2 ---- $6.1-5=$ gradient is 1

Applications of Differential Calculus:

■ Differentiation helps us to find out the average rate of change in the dependent variable with respect to change in the independent variable.

- It makes differentiation to have applications.

■ Various scientific formulae and results involves:

- rate of change in price,

■ change in demand with respect change in output,
■ change in revenue obtained with respect change in price,

- change in demand with respect change in income, etc.

Pg 8.15

■ Cost Function: Total cost consists of two parts (i) Variable Cost (ii) Fixed Cost

- If $\mathrm{C}(\mathrm{X})$ denotes the cost producing x units of a product then $\mathrm{C}(\mathrm{x})=\mathrm{V}(\mathrm{x})+$ $\mathrm{F}(\mathrm{x})$, where $\mathrm{V}(\mathrm{x})$ denotes the variable cost and $\mathrm{F}(\mathrm{x})$ is the fixed cost. Variable cost depends upon the number of units produced (i.e value of x) whereas fixed cost is independent of the level of output x. For example.

■ Average cost (AC or C) = Total cost / output
■ Average variable cost (AVC)= V.C/ Output

- Average Fixed Cost (AFC) = FC/ output

THANK YOU

